Is demand for data storage or supply driving increased storage?

An IT industry analyst article published by SearchStorage.


article_Is-demand-for-data-storage-or-supply-driving-increased-storage
Figuring out whether we’re storing more data than ever because we’re producing more data or because constantly evolving storage technology lets us store more of it isn’t easy.

Mike Matchett
Small World Big Data

Whether you’re growing on-premises storage or your cloud storage footprint this year, it’s likely you’re increasing total storage faster than ever. Where we used to see capacity upgrade requests for proposals in terms of tens of terabytes growth, we now regularly see RFPs for half a petabyte or more. When it comes to storage size, huge is in.

Do we really need that much more data to stay competitive? Yes, probably. Can we afford extremely deep storage repositories? It seems that we can. However, these questions raise a more basic chicken-and-egg question: Are we storing more data because we’re making more data or because constantly evolving storage technology lets us?

Data storage economics
Looked at from a pricing perspective, the question becomes what’s driving price — more demand for data storage or more storage supply? I’ve heard economics professors say they can tell who really understands basic supply and demand price curve lessons when students ask this kind of question and consider a supply-side answer first. People tend to focus on demand-side explanations as the most straightforward way of explaining why prices fluctuate. I guess it’s easier to assume supply is a remote constant while envisioning all the possible changes in demand for data storage.

As we learn to wring more value out of our data, we want to both make and store more data.

But if storage supply is constant, given our massive data growth, then it should be really expensive. The massive squirreling away of data would instead be constrained by that high storage price (low availability). This was how it was years ago. Remember when traditional IT application environments struggled to fit into limited storage infrastructure that was already stretched thin to meet ever-growing demand?

Today, data capacities are growing large fast, and yet the price of storage keeps dropping (per unit of storage capacity). There’s no doubt supply is rising faster than demand for data storage. Technologies that bring tremendous supply-side benefits, such as the inherent efficiencies in shared cloud storage — and Moore’s law and clustered open source file systems like Hadoop Distributed File System and other technologies — have made bulk storage capacity so affordable that despite massive growth in demand for data storage, the price of storage continues to drop.

Endless data storage
When we think of hot new storage technologies, we tend to focus on primary storage advances such as flash and nonvolatile memory express. All so-called secondary storage comes, well, second. It’s true the relative value of a gigabyte of primary storage has greatly increased. Just compare the ROI of buying a whole bunch of dedicated, short-stroked HDDs as we did in the past to investing in a modicum of today’s fully deduped, automatically tiered and workload-shared flash.

It’s also worth thinking about flash storage in terms of impact on capacity, not just performance. If flash storage can serve a workload in one-tenth the time, it can also serve 10 similar workloads in the same time, providing an effective 10-times capacity boost.

But don’t discount the major changes that have happened in secondary storage…(read the complete as-published article there)

Enterprise SSDs: The Case for All-Flash Data Centers – EnterpriseStorageForum.com

An IT industry analyst article published by Enterprise Storage Forum.


article_enterprise-ssds-the-case-for-all-flash-data-centers
A new study found that some enterprises are experiencing significant benefits by converting their entire data centers to all-flash arrays.

by Mike Matchett, Sr. Analyst

Adding small amounts of flash as cache or dedicated storage is certainly a good way to accelerate a key application or two, but enterprises are increasingly adopting shared all-flash arrays to increase performance for every primary workload in the data center.

Flash is now competitively priced. All-flash array operations are simpler than when managing mixed storage, and the performance acceleration across-the-board produces visible business impact.

However, recent Taneja Group field research on all-flash data center adoption shows that successfully replacing traditional primary storage architectures with all-flash in the enterprise data center boils down to ensuring two key things: flash-specific storage engineering and mature enterprise-class storage features.

When looking for the best storage performance return on investment (ROI), it simply doesn’t work to replace HDDs with SSDs in existing traditional legacy storage arrays. Even though older generation arrays can be made faster in spots by inserting large amounts of underlying flash storage, there will be too many newly exposed overall performance bottlenecks to make it a worthwhile investment. After all, consistent IO performance (latency, IOPs, bandwidth) for all workloads is what makes all-flash a winning data center solution. It’s clear that to leverage a flash storage investment, IT requires flash-engineered designs that support flash IO speeds and volumes.

Even if all-flash performance is more than sufficient for some datacenter workloads, the cost per effective GB in a new flash engineered array can now handily beat sticking flash SSDs into older arrays, as well as readily undercutting large HDD spindle count solutions. A big part of this cost calculation stems from built-in wire speed (i.e. inline) capacity optimization features like deduplication and compression found in almost all flash engineered solutions. We also see increasing flash densities continuing to come to market (e.g., HPE and Netapp have already announced 16TB SSDs) with prices inevitably driving downwards. These new generations of flash are really bending flash “capacity” cost curves for the better.
All-Flash Field Research Results

Recently we had the opportunity to interview all-flash adopting storage managers with a variety of datacenter workloads and business requirements. We found that it was well understood that flash offered better performance. Once an all-flash solution was chosen architecturally, other factors like cost, resiliency, migration path and ultimately storage efficiency tended to drive vendor comparisons and acquisition decision-making. Here are a few interesting highlights from our findings:

Simplification – The deployment of all-flash represented an opportunity to consolidate and simplify heterogenous storage infrastructure and operations, with major savings just from environment simplification (e.g. reduction in number of arrays/spindles).
Consistency – The consistent IO at scale offered from an all-flash solution deployed across all tier 1 workloads greatly reduced IT storage management activities. In addition…(read the complete as-published article there)

Hyperconverged Storage Evolves – Or is it Pivoting When it Comes to Pivot3?

(Excerpt from original post on the Taneja Group News Blog)

Pivot3 recently acquired NexGen (Mar 2016). Many folks have been wondering what they are doing. Pivot3 has made a name in the surveillance/video vertical with bulletproof hyperconvergence based on highly reliable data protection(native erasure coding) and large scalability (no additional east/west traffic with scale) as a specialty. So what does NexGen IP bring?  For starters, multi-tier flash performance and enterprise storage features (like snapshots).

…(read the full post)

Server Side Is Where It’s At – Leveraging Server Resources For Performance

(Excerpt from original post on the Taneja Group News Blog)

If you want performance, especially in IO, you have to bring it to where the compute is happening. We’ve recently seen Datrium launch a smart “split” array solution in which the speedy (and compute intensive) bits of the logical array are hosted server-side, with persisted data served from a shared simplified controller and (almost-JBOD) disk shelf. Now Infinio has announced their new caching solution version 3.0 this week, adding tiered cache support for server-side SSD’s and other flash to their historically memory focused IO acceleration.

…(read the full post)